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Neural networks for estimating intrinsic dimension
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We consider the problem of feature extraction and determination of intrinsic dimensionality of observation
data. One of the common approaches to this problem is to use autoassociative neural networks with a “bottle-
neck” projecting layer. We propose a different approach in which a neural network performs a topological
mapping that creates a nonlinear lower-dimensional projection of the data. The mapping preserves relative
distances of neighbors. This technique can be efficiently implemented with the help of radial basis function
networks, and it is significantly faster than training an autoassotiative network. We show that the proposed
technique can be used for estimating the dimension of minimal mathematical model from time series data.
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[. INTRODUCTION to-one to ad-dimensional hyperplane, sometimes PCA can
find such a plane. Also, PCA can reduce noise, and for this
Analysis of observational or sensory data is very impor-reason it is widely used in statistical applications.
tant in applications such as pattern recognition, diagnostics, For general nonlinear dependencezainy, PCA is usu-
prediction, and control. Usually, the complexity of the task toally of little help. In such cases, an idea of “bottleneck”
be accomplished depends on the properties of the data. Faktoassociative neural networkis2] can be helpful. Such a
example, if one needs to obtain an approximation of an undetwork uses am-dimensional vectoe both as input and
known function, the number of parameters to be estimate@UtPut. However, the internal structure of the network in-
depends essentially on the dimensionality of the data. ThEludes one of the hidden layers with omlyieurons. Thus the

greater the number of fitting parameters, the more compled'st half of the network works as a projection mappiRg

d . P .
becomes the task of optimizing their estimates. For nonlinear” R'» While the remaining part performs the restoration

approximations with tools such as multilayer p(::rceptron:s,r’napp'ngR —R". By building a number of such networks

increase of the number of parameters typically adds to opti\—Nith d“‘_feref.‘“_’ and a_nalyzing_ their errors in_ res_torirzg;fter .
H[OJectlon, it is possible to find the intrinsic dimensionality

mization problems because of rugged landscapes and Spuof the data. It has been shown that if the neurons of such a

ous minima in the parameter space. . . network perform only a linear transformation, then this pro-
For this reason, many data processing tasks include Preadure coincides with PCH]

processing and feature extraction as a necessary|siep There are numerous problems in which it is very useful to
Sometimes this enables one to simplify the problem and 19,56 4 knowledge of the intrinsic dimension. We present
reduce the d_imensionality of the input data_by extracting the,gre two examples. The first one is related to building a
most essential components. For example, if we are procesgpntrol neural network that must analyze input sensory data
ing vectorszeR™, i=1,... N, and they in fact depend and decide which control action must be taken. The learning
only ond<m parametery, that is,z=2(y;), y;e R%, then it efficiency of the network depends on the number of connec-
is preferable to process the vectgrinstead ofz. Note that  tions to be adjusted in the learning process. Preprocessing
there is no need for precise determination of the vecyors initial data with projecting subnetwork can substantially re-
themselves, it is adequate to find the mappRB—R%u  duce the number of connections, which in turn simplifies
=F(2)=F(z(y)), such thatu is equivalent toy, that is, the learning and increases its efficiency. Moreover, if the number
mappingy—u is one-to-one, differentiable and invertiblg (  of essential parameters is small enough, then the structure of
and z are diffeomorphig. The transformatiorz—y can be the projectedd-dimensional sensory space may provide ad-
considered as a way tncodeor packdata without loss of ditional useful information, see Ref3] for experiments on
essential information. controlling small robots.

If z depends ory linearly, that is,z=Ay whereA is an Another example is related to nonlinear time series analy-
mXd matrix, then the essential dimensionszafan be found sis. There is a class of techniques for system identification
with the help of the well-known principal component analy- and prediction based upon the theory of dynamical systems
sis(PCA). It is easy to show that the necessary directions arend the procedure of delay reconstruction from a scalar or
ones that correspond tbeigenvectors of thenXm matrix  vector time series. The main hypothesis is that the observa-
N~'S;zz  with the largest(nonzerg eigenvalues. Even if tion datax;=x(t;) are generated by a dynamical syst&m
the relationship betweeyandz is more complex, PCA can =f(x) or
still be very useful: if the surfacg(y) can be projected one-

X(t+7) =@ (x(1)), 1)
*Email address: alexei.potapov@uleth.ca andx; are the values of an observalies=h(x(t;)). One can
"Email address: ali@uleth.ca use the Takens theoref]: if x belongs to al-dimensional
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manifold M¢ and ¢ andh have at least two continuous de- Ref.[11], local singular value decomposition is used in Refs.
rivatives (the theorem has also a few additional assumption§12.8]; and the technique of local false nearest neighbors is

that are typically satisfiedthen for the mapping used in Refs[13,5]. All of these approaches have worked for
model systems, but they require rather large data sets, e.g.,

X(t)—z(t)=A(x) about 2< 10* points for the Lorenz attractor. In this paper we
" present a technique that is reliable for small as well as large
={x®),x(t+7), ... x[t+(m—1)7]}eR 2 data sets, although it generally requires a greater amount of

computation.

The purpose of this paper is to consider different neural
network techniques for estimating the intrinsic dimension,
which we shall denotel, from numerical data. As our ex-
periments show, the autoassociative multilayer perceptrons
are not efficient enough from computational point of view
when the dimension of the input data~10 and the number

2(t+ ) =P[z(t)]=A[o" (A" X(z(1)))], zeSICR™. of vectors to be processdd~ 10°. Even on very fast ma-

3) chines, learning of a network takes too long. In contrast, it is
more efficient to use radial basis functioRBF) networks
The systemg1) and(3) can be regarded as a nondegeneraténd the concept of topological mapping. If we do not lose
and invertible change of variable—z. Therefore, from the information under projection mapping, then topology, that is,
set of vectorsz one can study the properties of attractor ofthe structure of neighborhood, before and after mapping
Eq. (1) that are invariant under change of variables. should be the same. Note that there exists one-to-one map-

Based on this theorem a class of methods for system idering, for example, between one-dimensional unit segment
tification and prediction has been developed, see, e.g., r@nd a two-dimensional unit square, but such mappings are
views [6,5,7. There are methods for estimating fractal di- not continuous and they do not preserve the neighborhood of
mensionsdg (wWhich gives the lower bound fat), Lyapunov ~ points. Points that are neighbors in the square may not be
exponents, metric entropies, and time series predictiorﬂeighbors on the line and vice versa. So we try to construct a
Some methods do not use the dimensibaexplicitly (e.g., ~ continuous mappindR™—R? such that the distances be-
estimation of correlation exponenwhile others essentially tween newd-dimensionaly vectors are approximately the
use it(e.g., matrix methods for estimating Lyapunov expo-Same as that for the originalvectors. In contrast to autoas-

the generic property is that it gives an embedding/iSfinto
R™ provided m=2d+1. This means that typically iiR™
there exists al-dimensional surfac&’= A (MY) that is dif-
feomorphic toM Y, all vectorsze S¢ and there is one-to-one
correspondence betweanand z. Therefore, there exists an
analog of Eq(1) in z representation,

nents and some prediction technigues sotiative networks, topological RBF networks can learn sev-
In the context of dynamical systems, the paramethas  eral orders of magnitude faster. _
drawn attention of several authors. As a rudeis not equal A simple but common way to check the preservation of

to the dimension of the phase spaifeEq. (1): a system of the neighborhood structure is to compare distances between
100 equations can have a limit cycle as its attractor with points in the original space with distances between their im-
=1 and not 100. The entitg has several names. For ex- ages after a mapping: near neighbors must remain near
ample, it may be called “local intrinsic dimensiorf8] or ~ neighbors, while remote neighbors should remain remote
“dynamical dimension”[5]. From mathematical point of neighbors. This is the basis for a number of techniques in
view, it is related to the concept d@fiertial manifolddevel- ~ nonlinear time series analysis in which a reconstruction of
oped in the mid 1980F9]. Often an attractor of a dynamical lower dimension is often used instead of projection mapping.
system does not span all dimensions of the phase space,Bxamples include the false nearest neighbor method for es-
may belong to a surfacémanifold) of lower dimension. If timating optimal embedding dimension aml [5,13], the
such a manifold containing the attractor is invariant, differ-technique for estimating optimal embedding dimension and
entiable and exponentially attracting all trajectories close tdime delay[14], and some other works. We also apply a
it, then it is called inertial manifold. We shall call an inertial technique based on comparison of distances, but we con-
manifold of the least possible dimension as a minimal inerstruct a mapping that gives an optimal value of a certain
tial manifold (MIM). Its dimensiond, is the parameter that “topological” functional.
was discussed above, and the MIM can be considered as the The structure of the paper is the following. In Sec. I, we
manifold M9 used in the Takens theorem. The existence ofonsider various types of autoassociative networks and their
MIM means that on attractor the dynamical system in factshortcomings. In Sec. Ill, we describe the topological map-
depends only ord, essential variables, other modes beingPing, the algorithm for its fast numerical implementation,
“enslaved.” In fact, the theory of inertial manifolds gives and in Sec. IV the numerical examples.
precise formulation of the well-known Haken'’s slaving prin-
ciple in synergetic§10]. So, in the context of dynamical
systems, analysis of intrinsic dimension of observation data
can give very important information about the underlying
dynamical system. At present, neural networks are widely used for approxi-
A number of approaches for the determinatiordpfwith ~ mation of unknown dependencies. Like any other approxi-
different names ford,) are available in the literature. For mation technique, these networks use parameter fitting for a
example, rational polynomial approximations are used irselected class of functions. There are two major types of

Il. AUTOASSOCIATIVE NETWORKS AND THEIR
VARIOUS IMPLEMENTATIONS

046212-2



NEURAL NETWORKS FOR ESTIMATING INTRINSIC . .. PHYSICAL REVIEW B5 046212

approximation networks, namely, multilayer perceptrons andrery fast machingAlpha 667 MHz with speed a little bit
radial basis function networK4]. higher than 1.9 GHz Pentium).4Note that Kramef2] used
Multilayer perceptrons consist of a number of layers ofthree-layer networks where only one layer used nonlinear
nonlinear elements, the neurons. The state of the nduron transformation to increase the learning rate. However, to ap-
the layerj is denoted by; ;. Each neurorx; ; receives sig- proximate dependencies of a general form, it may be insuf-
nals from neurons in the previous layef;_; through the ficient. (i) The results often demonstrated essential depen-
connections with weightsy; ,, and then performs a nonlin- dence on initial guess fawv. Hence, to make sure of global
ear transformatiowr giving its present value. In other words, minimum (or close enough to )it one has to make many

each layer performs the mapping similar runs resulting in increase of computation time to sev-
eral hours per network architectur@i) Processing of one
N1 time series takes a number of trials with different values of
Xij=0o kzl Wi i Xk,j—1FWig|, m, d, and probablyN. This makes the whole procedure very

time consuming.
Another common type of neural network is known as
a bias for the given neuron. In order to simplify the proce-RBF_ netyvork. Rad'e_ll basis f_unct|on networks pr0\_/|de ap-
proximations of a different kind. In the space of input

dure, sometimes a special unit neunggy=1 is added to h g hes f
each layer. This way the bias can be considered as a usu4fctors one choosell <N centersc; and searches for an

connection to this additional neuron. The functieris usu-  aPProximation of the form
ally chosen to be a sigmoid(x)=1/(1+e~*) or a function

M
similar to it. = (|z—¢l)=R(z,a).
The input to the network is fed to the first layer Y 21 & h=RCza)

wheren; is the number of neurons in the layigrandw; g is

=X; g, and its output becomes the input for the next layer L .
and so on. This way we obtain a feed-forward network ar-The parameters are selected by minimizing the error function
chitecture. There are also recurrent networks in which back- N
ward connections exist, but we shall not consider them in E(a)=> ’
this paper. Let the output of the last layerye For the sake k=1
of brevity we shall denote the whole mapping performed by
the network ay=G(z,w), wherew is the set of weights to Usually, the fitting is done only by adjustirgg with fixed ¢
be adjusted during learning. Often such netwdfiks., the and. Then the problem reduces to the classical search for
functions G(z,w)] are presented as a diagram, where neuminimum of a quadratic function, arg satisfy a linear sys-
rons are shown as circles, and weights as lines connect- tem of equations. This makes learning a very fast and rather
ing them. easy task, but the results may essentially depend on the
Usually, learning of the network is performed by minimiz- proper choice ot; and .
ing its errors in the set of the training examples, the known Building an autoassociative network with RBF is not so
pairs{z,,y}, k=1, ... N. It is necessary to find the mini- efficient, because the mappizg- R(R(z,a),b) depends lin-
mum of the functional early onb, but it has a strong nonlinear dependenceohs
a result, the corresponding numerical algorithm is inefficient
and calculations also take a very long time. So, as with
E(w)= > |yx—G(z,w)[% multilayer perceptrons, this technique seems to be practical
k=1 only for small data sets. Therefore, we need a faster tech-
nique producing similar results. We have developed it on the
basis of topological considerations.

2

M
yk—;w(lz—qh

N

The minimization can be done by a number of standard pro
cedures. For evaluation §E there is a fast technique called
error backpropagation. The details of numerical implementa-

The autoassociative network, in fact, consists of two AND ITS IMPLEMENTATION
pﬁrts: the projecting payt=G,(z,w,) and the restoring part A it follows from the above, the basic idea behind the
z=Go(y,w,). The error function has the form use of autoassociative networks is that there exists a smooth
N mappingR™— RY such that there is no loss of information
E(w)= Ze— G (G (Ze . W1 ), Wo)|2. about the set of vector&. In particular, this means that
(W) k21| = G2(Ga(zc,wa), o) topological properties should be preserved, that is, close

neighbors should remain close, remote ones should remain

We implemented this technique and tested it with timeremote, and two different points should not be projected into
series from the Lorenz attractor with various values of di-one. In other words, there should be a proportiond)ity
mensionsm=dimz and d=dimy, N=500. The technique —y;|~||z—z]|. To use this idea, we need a way to adjust
worked, but we were not satisfied because of the followinditting parameters such that this proportionality is guaran-
reasons(i) The learning was rather slow. Tests with both teed.
three-layeiG,; andG,, even for the conjugate gradient mini-  There are at least two rather obvious ways to do so. Let us
mization learning, took about 50 000 steps or 20—30 min on @enote byK the number of pairsZ,z) used for the esti-
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mates. Then, if we minimize the function parameters is simpler, which means that fewer iterations are
X needed andii) s does not depend oa, all values ofy(||z;
o1 ly: = y;lI? L @ —¢j[) can be calculated only once, and then used at every
5\ 1z-z)? ' iteration so that each iteration takes much less time.

As we have mentioned before, the performance of RBF

then we should receive a mapping that preserves the digietworks depends on the choice of approximation centers

tances in an optimal way. and on the basis functiog. Let us consider these points in
However, Eq(4) may be very sensitive to situations when more detail.

lyi—yjl>llzi—z], but not enough sensitive to that when  Usually, the number of centeh8 is chosen to be less than

lyi—vill<llzi—z|, and both cases are crucial for obtaining aN to avoid overfitting. At the same time, for a good approxi-

good mapping—Yy. For this reason we used another form of mation, there should not be any pomtiocated too far from

topological functional, all centers. To satisfy these requirements, we applied the fol-
5 ) lowing technique. In what follows, we shall denote &fy;)
_K-! ly;i =il n Izi—z| 5) the centerc, which is the closest one to the vecinr
i \lz—zl?  llyi—yll? ' The first center is chosen to be the center of mass of all

the points,c;=(z). Then we apply the following iterative
which has some features common with the one used in Refcheme assuming thatcenters are chosen.
[14]. The theoretical minimunE=2 of Eq. (5) is achieved Step 1. For each, find its nearest centex(z). This splits
whenlly; —y;||=|z— z]|. So, numerical algorithm for obtain- the set ofz vectors into Dirichlet-Voronoi cells around each
ing a topological mapping is as follows: we choose a neurat; . We find vectorz*, for which lzi—c(z)| is the greatest,
network architecture giving the mapping=G(z,w) or y  and takec,,,=2z*. In other words, the biggest cell is split.
=R(z,a), and the training set of paifs,j}, and then adjust Step 2. Addition of a center changes the structure of the
the weights of the network to minimiz€. In the numerical Voronoi cells. We find the new cellsigain for eaclz; find its
results presented below we used the RBF approximation ant(z) ], then move eacls; to the center of mass of its own
minimized the following functional: cell.
Step 3. Calculate the mean distance (|z—c(z)|).
S(d)=minE(a,d) Compare it with the mean distancg between pointz. If
a r/rqy is not small enough, return to Step 1.
IR(z )~ R(z ,a)[? This algorithm provides steady decrease @fith the ad-
1 1 dition of every new center. The homogeneous distribution of
lzi—z|? c over the set ot is important since we study the distances
between close neighbors of the points. This algorithm can be
|zi— ZjHZ accelerated if at Step 1 we sghif<n biggest cells instead of
2" ©®) only one.
IR(z,@)~R(z 3 Y -
Step 1a). For eachz; find its ¢(z).

=minK 1> (

a {i

To find the intrinsic dimensiod, we must calculat&(d) Step 1b). For each celj find its Z , the vector belonging
for a number ofd values. Ifd<d, , then dimension increase t0 this cell with the largesfiz—c(2)|. Let us denoted;
allows better unfolding of the data, ar&{d) must be de- =|Zz"—c(Z), andd* =maxd; .
creasing:S(d+1)<S(d). On the other hand, iti=d, the Step 1c). Selectk, cells with the largest; values, and
dimension increase should not influen&d). In other choose among them only those, for whidh>3d*. Set the
words, atd=d, the values ofS(d) should stabilize. corresponding;’ as the new centers.

However, this approach also has its shortcomings. If we For bigk, the increase in speed may be very significant,
use all possible pairsi,j}, then the training set enlarges but the total number of centers for the sanie, also be-
dramatically: instead dfl vectors we need to deal witk?/2  comes greater. We used the vakye=2.
pairs. For large data sets this can make this algorithm also Usually, for the application of the RBF technique, it is not
impractical. Nonetheless, as in other approag¢hdsl 3,3, if required that the centersshould coincide with one of the
we confine ourselves only tocal properties of the mapping, vectors. On the other hand, since we approximate a
only ~N pairs of nearest neighbors should be adequate td-dimensional surface im-dimensional space, it may be de-
extract the value ofl. The cost of this acceleration is the sirable to restrict the approximation centers to this surface,
possibility of poor global properties of the mapping: for and the easiest way to do it is to place the centers into some
some remote points the correspondingmay become close of the vectors. This restricted placement can be easily done
or coincide. That is, there may be no good global inversef in Step 2 we move each centegrnot to the center of mass
mappingy— z. On the other hand, using all the pairs, most ofof its Voronoi cell, but to the vector that is closest to the
which involve remote points, there is a risk of losing local center of mass.
properties. Usually the restricted allocation of centers results in

We applied this technique to both multilayer perceptronsslightly greaterabout 10% number of centers for the same
and RBF. Computations for the latter case were 10-100/r,. All test calculations below were performed flog=2
times faster becaud@) the dependence d(a,d) on fitting  with both restricted and nonrestricted center allocation. The
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results in both cases coincide, so at present there are no
numerical evidence in favor of the restricted allocation,
though in some cases it may be better. The presented figures
correspond to the restricted center allocation.

The choice ofy is also crucial. One of the typical choices
is ¢(r)=exp(-r?/s’). The performance of the method de-
pends on the choice of for smalls (effectively localizedy)
it is possible to obtain smaller values for the functi®ib),
but some effects of overfitting arise. The optimal choice of
proved to be close to the diameter of the setr.of

The pairs{i,j} used in Eq(6) were selected to satisfy the
following criteria: (i) the number of pairs should be close to
N to expedite computationgji) for noisy data, the pairs
should not be too close to one anoth@ir;) every or almost
every point must participate in at least one pair. There may
be many ways of pair selection, we found the following
scheme satisfactory. According to the noise level, we set a
minimal distancee between points in pairs. In case of re-
stricted center allocation for eaah, which is a center we
find its e-nearest neighbo(the nearest neighbor after dis-
carding all neighbor closer thas); if z is not a center we
find its e-nearest center. For nonrestricted allocation for each
z; we used thes-nearest neighbor, which is not yet included
in other pairs. Then the structure of the nearest neighbors is
accounted for.

IV. NUMERICAL EXPERIMENTS

To test our approach, we used the following data géjs:
two-dimensional surface in five-dimensional space, intrinsic
dimensiond, =2; (2) time series for Lorenz attractat; = 3;

(3) pseudorandom numbers for which there is no intrinsic
dimension;(4) time series for 5 torusg,=5; and(5) time
series for the Lorenz attractor with noise. For the $8js

(5), the scalar data were transformed to zero mean and unit
variance before formingn-dimensional delay vectors from
them. The topological mapping has been used in the fém
with the techniques of selecting approximating centers and
training pairs described above. The usual choice for thg

ratio was 1 or 2.

The test for the surface in two-dimensional space illus-
trates the approach. The five-dimensional datgere formed
as follows. First two componentg andz, formed a regular
20X% 20 grid on a plane with identical steps in both directions,
the third component;=z5+ 23, z,=25=0 [Fig. 1(@]. For
theseN=400 points we made a set of centefs and per-
formed minimization of the functiondb). For minimization
we set small random initial values for @) and then applied
the method of conjugate gradierisee, e.g., Ref.1l] or any
book in nonlinear optimization Minimization takes a few
thousands of steps, though usually after 1000—2000 steps the
dependence o8(d) is clearly visible. The obtained values FIG. 1. Results of a topological mapping for two-dimensional
were 3(1)=4.8 and ford=2 S(d) was a}lmpst .exactlly 2', surface in five-dimensional spad@) The original surface(b) Its
Therefore, we can conclude that the intrinsic dimensionality, ;_gimensional projectiog=R(z,a), the radial basis function pa-
of the data isd, = 2. . . _rameters equal to the diameter of the data sét) Similar 2D

To show the influence of the choice of the radial basisprojection with s ten times less. For smal the effects of
function ¢(r) =exp(-r?s’), we performed calculations for overfitting-type arise, though local properties of the original surface
two values ofs: the usual choice equal to the diameter of theare captured correctly. In other examples below we ssequal to
data ses;=max |z,— z,| ands,=0.1s;. The resulting two-  the diameter of the data set.
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d
- FIG. 4. Topological mapping for delay reconstructions of 5 torus
2.3 4 with 7=0.1, m=11. The estimated,=5.
n 22 do not showS(1) in the figures. In both cases=5 and 7S
b) reaches its minimal value at=3 and further increase af
2.1 does not change the results. Therefore the technique gives
the correct estimate of the dimension of the Lorenz system
2.0 S S A d,=3. Most interesting observation related with the Lorenz

d system is that its dimension can be estimated from a very
short time series. Figure(® shows the results folNt
FIG. 2. Results for the topological mapping for delay recon- =600, and the correct intrinsic dimension still can be esti-
structions of the Lorenz attractor with=0.03, m=5 (@), andm mated.
=7 (A). The value ofS(1) is not shown, because it is too big. The  For comparison, the results for random data are shown in
length of time series i&+=5000 (a) and 600(b). Ford=3 the  Fig. 3. We processed the sets Mf=1400 five- and seven-
increase ofd does not influenc&(d), so we can conclude that the dimensional random vectors with components independent
intrinsic dimensiond, =3. and homogeneously distributed §@,1]. It is clear that in
both casesn=5 andm=7 S;;, monotonously approaches
dimensional projections of the dayg=R(z ,a) (d=2) are its least value of 2.
shown in Figs. (b), 1(c), respectively. In both cases the local  Figure 4 shows the resultsrf@ 5 torus, a sum of five
structure of data is captured properly, though for sradiie  harmonic oscillations with incommensurate frequencies. We
effects similar to overfitting appear. Global properties of theused it as an example of a higher-dimensional system. The
mappingR are better in the case=s;,. For this reason the results give a correct valugy=5.
choices=max J|z,— zJ| has been used in all other examples  In all these examples, the parametewas very close to 0,
below. just to avoid pairs that almost coincide and can reduce the
For the Lorenz attractor, we used scalar time series of thaccuracy of numerical computations. To show an example of
componenix; with time stepr=0.03, the parameters of the processing noisy data we made a signal with noise. We took
system were standardi, 28, 8/3. We performed a num- a time series for the Lorenz system of the example above,
ber of calculations with different time series lenddt and  transformed it to zero mean and unit variance and then added
embedding dimensiom. To reduce the amount of computa- to it a noise term 0.2 whereé is uniformly distributed on
tions we used only every third reconstructed vectorNso [—1,1]. Figure 5 shows the results for differegitfor small
=N/3. Figure 2a) shows the results foNt=10*, m=5, values the results resemble random data, for greater values
circles, andm=7, triangles. In this figure and belo®(1)

>5(2), and toshow the details of th&(d) dependence we 2
3.0 4
A
3.0 .
w .
2.5
7)) 2 N
25 4 a 2 2 2
. .\ 2.0 T T T T T T T
. . 0 1 2 3 4 5 & 7
20 T ] | T t T + d
0 1 2 3 4 5 6 7 . .
d FIG. 5. Results for the Lorenz system with noise. To process the
data it is necessary to increase the parameter=0.001 @), ¢
FIG. 3. Topological mapping for random data=5 (®) and =0.1 (A), £=0.3 (W). For smalle noise increases the dimension
m=7 (A). Note the steady decreaseS);, with d and the absence estimate to 5, while in the last case, wheis greater than the noise
of stabilization. amplitude, the estimate af, =3 is correct.
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they give the correct estimatg= 3. guesses and to choose the best result. For RBF approxima-
It is important to note that the applicability of the de- tions in Eq.(6) there are also numerous local minima, and
scribed technique, like any other technique of dimension esthe resulting mapping may also depend on initial guess.for
timates[5], depends on the type and quality of data. Thebut almost all of these mappings are equivalent in ternS of
topological mapping extracts the properties of finite set ofvalues, and we almost never found essential differences. In
points, and to get a correct estimate, this set must correctlgne of the tests we used 50 different initial guessesfand
reflect the properties of the underlying object, e.g., the geafter 30 000 steps of minimization in 26 cases we obtained
ometry of a dynamical system attractor. For low-dimensionalS=2.011, in 21 caseS=2.012, and only three values were
dynamical system this is often satisfied. At the same timeequal to 2.029, 2.047, and 2.085. Therefore, this technique
there are situations when geometrical distortions can infludoes not require numerous repetitions. Another important
ence the arrangement of the data points. For highpoint is that the type of dependen&éd) can be observed
dimensional systems the number of data points may be inypically after 1000—2000 minimization steps, sometimes
sufficient for detecting all dimensions and so on. This in turnearlier. Although the values @(d) are not yet established
may change the results of the algorithms. One of the wellafter these steps, the trenddris usually stabilized and it is
known sources of distortions is the delay reconstruct®)n  possible to draw conclusions about the dimensionality of
[15-17]. Other sources of distortions may arise in the courselata.
of measurements. Therefore, we cannot guarantee correct es-
timates of intrinsic dimensions ol kinds of da.ta. I't is V. CONCLUSION
necessary to make sure that there are no essential distortions
in the data. Sometimes a combined application of several We have proposed an algorithm based on RBF networks,
different algorithms may be recommended. which, by analogy with Refl2], can be called “topological
Comparing this algorithm with, e.g., the method of local nonlinear PCA.” It extracts the intrinsic dimension of data.
false neighborgLFN) [13], we can say, that it occupies a Intrinsic dimension can be important for diagnostic purposes
different “ecological niche.” The LFN algorithm requires or for designing a controlling neural network that should
rather big amount of data, about“l@ata points and is very analyze observed data. This technique is versatile and fast
fast (for smaller amounts of data it becomes hard to detectompared to other neural approaches. On the other hand, it is
false neighbons Our technique works well for ten and more based mainly upolocal topological properties of data, while
times smaller data sets. It requires essentially more comppreservation of global topology is not guaranteed. For this
tations, but the capabilities of modern Pentium Il or Pen-reason, this technique may not be useful for data compres-
tium 4 personal computers are enough for its application. sion. Nonetheless, it gives an essential information for build-
Compared to the use of perceptrons for approximation ofng an autoassociative network that can compress the data.
the projection mapping, the application of RBF networks is
bet_ter for two reasons. First, they often require less minimi- ACKNOWLEDGMENTS
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