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Neural networks for estimating intrinsic dimension
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We consider the problem of feature extraction and determination of intrinsic dimensionality of observation
data. One of the common approaches to this problem is to use autoassociative neural networks with a ‘‘bottle-
neck’’ projecting layer. We propose a different approach in which a neural network performs a topological
mapping that creates a nonlinear lower-dimensional projection of the data. The mapping preserves relative
distances of neighbors. This technique can be efficiently implemented with the help of radial basis function
networks, and it is significantly faster than training an autoassotiative network. We show that the proposed
technique can be used for estimating the dimension of minimal mathematical model from time series data.
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I. INTRODUCTION

Analysis of observational or sensory data is very imp
tant in applications such as pattern recognition, diagnos
prediction, and control. Usually, the complexity of the task
be accomplished depends on the properties of the data
example, if one needs to obtain an approximation of an
known function, the number of parameters to be estima
depends essentially on the dimensionality of the data.
greater the number of fitting parameters, the more comp
becomes the task of optimizing their estimates. For nonlin
approximations with tools such as multilayer perceptro
increase of the number of parameters typically adds to o
mization problems because of rugged landscapes and s
ous minima in the parameter space.

For this reason, many data processing tasks include
processing and feature extraction as a necessary step@1#.
Sometimes this enables one to simplify the problem and
reduce the dimensionality of the input data by extracting
most essential components. For example, if we are proc
ing vectorsziPRm, i 51, . . . ,N, and they in fact depend
only ond,m parametersy, that is,zi5z(yi), yiPRd, then it
is preferable to process the vectorsy instead ofz. Note that
there is no need for precise determination of the vectory
themselves, it is adequate to find the mappingRm→Rd:u
5F(z)5F„z(y)…, such thatu is equivalent toy, that is, the
mappingy→u is one-to-one, differentiable and invertible (y
and z are diffeomorphic!. The transformationz→y can be
considered as a way toencodeor packdata without loss of
essential information.

If z depends ony linearly, that is,z5Ay whereA is an
m3d matrix, then the essential dimensions ofz can be found
with the help of the well-known principal component ana
sis ~PCA!. It is easy to show that the necessary directions
ones that correspond tod eigenvectors of them3m matrix
N21( izizi

T with the largest~nonzero! eigenvalues. Even if
the relationship betweeny andz is more complex, PCA can
still be very useful: if the surfacez(y) can be projected one
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to-one to ad-dimensional hyperplane, sometimes PCA c
find such a plane. Also, PCA can reduce noise, and for
reason it is widely used in statistical applications.

For general nonlinear dependence ofz on y, PCA is usu-
ally of little help. In such cases, an idea of ‘‘bottleneck
autoassociative neural networks@1,2# can be helpful. Such a
network uses anm-dimensional vectorz both as input and
output. However, the internal structure of the network
cludes one of the hidden layers with onlyd neurons. Thus the
first half of the network works as a projection mappingRm

→Rd, while the remaining part performs the restorati
mappingRd→Rm. By building a number of such network
with differentd and analyzing their errors in restoringz after
projection, it is possible to find the intrinsic dimensionali
of the data. It has been shown that if the neurons of suc
network perform only a linear transformation, then this pr
cedure coincides with PCA@1#.

There are numerous problems in which it is very usefu
have a knowledge of the intrinsic dimension. We pres
here two examples. The first one is related to building
control neural network that must analyze input sensory d
and decide which control action must be taken. The learn
efficiency of the network depends on the number of conn
tions to be adjusted in the learning process. Preproces
initial data with projecting subnetwork can substantially r
duce the number of connections, which in turn simplifi
learning and increases its efficiency. Moreover, if the num
of essential parameters is small enough, then the structu
the projectedd-dimensional sensory space may provide a
ditional useful information, see Ref.@3# for experiments on
controlling small robots.

Another example is related to nonlinear time series ana
sis. There is a class of techniques for system identifica
and prediction based upon the theory of dynamical syste
and the procedure of delay reconstruction from a scala
vector time series. The main hypothesis is that the obse
tion dataxi5x(t i) are generated by a dynamical systemẋ
5f(x) or

x~ t1t!5wt
„x~ t !…, ~1!

andxi are the values of an observable,xi5h„x(t i)…. One can
use the Takens theorem@4#: if x belongs to ad-dimensional
©2002 The American Physical Society12-1
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A. POTAPOV AND M. K. ALI PHYSICAL REVIEW E 65 046212
manifold Md andw andh have at least two continuous de
rivatives~the theorem has also a few additional assumpti
that are typically satisfied!, then for the mapping

x~ t !→z~ t ![L~x!

5$x~ t !,x~ t1t!, . . . ,x@ t1~m21!t#%PRm ~2!

the generic property is that it gives an embedding ofMd into
Rm provided m>2d11. This means that typically inRm

there exists ad-dimensional surfaceSd5L(Md) that is dif-
feomorphic toMd, all vectorszPSd and there is one-to-on
correspondence betweenx and z. Therefore, there exists a
analog of Eq.~1! in z representation,

z~ t1t!5C@z~ t !#5L@wt~L21
„z~ t !…!#, zPSd,Rm.

~3!

The systems~1! and~3! can be regarded as a nondegener
and invertible change of variablex↔z. Therefore, from the
set of vectorsz one can study the properties of attractor
Eq. ~1! that are invariant under change of variables.

Based on this theorem a class of methods for system id
tification and prediction has been developed, see, e.g.
views @6,5,7#. There are methods for estimating fractal d
mensionsdF ~which gives the lower bound ford), Lyapunov
exponents, metric entropies, and time series predict
Some methods do not use the dimensiond explicitly ~e.g.,
estimation of correlation exponent!, while others essentially
use it ~e.g., matrix methods for estimating Lyapunov exp
nents and some prediction techniques!.

In the context of dynamical systems, the parameterd has
drawn attention of several authors. As a rule,d is not equal
to the dimension of the phase spaceof Eq. ~1!: a system of
100 equations can have a limit cycle as its attractor withd
51 and not 100. The entityd has several names. For e
ample, it may be called ‘‘local intrinsic dimension’’@8# or
‘‘dynamical dimension’’ @5#. From mathematical point o
view, it is related to the concept ofinertial manifolddevel-
oped in the mid 1980s@9#. Often an attractor of a dynamica
system does not span all dimensions of the phase spac
may belong to a surface~manifold! of lower dimension. If
such a manifold containing the attractor is invariant, diff
entiable and exponentially attracting all trajectories close
it, then it is called inertial manifold. We shall call an inerti
manifold of the least possible dimension as a minimal in
tial manifold ~MIM !. Its dimensiondI is the parameter tha
was discussed above, and the MIM can be considered a
manifold Md used in the Takens theorem. The existence
MIM means that on attractor the dynamical system in f
depends only ondI essential variables, other modes bei
‘‘enslaved.’’ In fact, the theory of inertial manifolds give
precise formulation of the well-known Haken’s slaving pri
ciple in synergetics@10#. So, in the context of dynamica
systems, analysis of intrinsic dimension of observation d
can give very important information about the underlyi
dynamical system.

A number of approaches for the determination ofdI ~with
different names fordI) are available in the literature. Fo
example, rational polynomial approximations are used
04621
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Ref. @11#, local singular value decomposition is used in Re
@12,8#, and the technique of local false nearest neighbor
used in Refs.@13,5#. All of these approaches have worked f
model systems, but they require rather large data sets,
about 23104 points for the Lorenz attractor. In this paper w
present a technique that is reliable for small as well as la
data sets, although it generally requires a greater amoun
computation.

The purpose of this paper is to consider different neu
network techniques for estimating the intrinsic dimensio
which we shall denotedI from numerical data. As our ex
periments show, the autoassociative multilayer perceptr
are not efficient enough from computational point of vie
when the dimension of the input datam;10 and the number
of vectors to be processedN;103. Even on very fast ma-
chines, learning of a network takes too long. In contrast, i
more efficient to use radial basis function~RBF! networks
and the concept of topological mapping. If we do not lo
information under projection mapping, then topology, that
the structure of neighborhood, before and after mapp
should be the same. Note that there exists one-to-one m
ping, for example, between one-dimensional unit segm
and a two-dimensional unit square, but such mappings
not continuous and they do not preserve the neighborhoo
points. Points that are neighbors in the square may no
neighbors on the line and vice versa. So we try to constru
continuous mappingRm→Rd such that the distances be
tween newd-dimensionaly vectors are approximately th
same as that for the originalz vectors. In contrast to autoas
sotiative networks, topological RBF networks can learn s
eral orders of magnitude faster.

A simple but common way to check the preservation
the neighborhood structure is to compare distances betw
points in the original space with distances between their
ages after a mapping: near neighbors must remain n
neighbors, while remote neighbors should remain rem
neighbors. This is the basis for a number of techniques
nonlinear time series analysis in which a reconstruction
lower dimension is often used instead of projection mappi
Examples include the false nearest neighbor method for
timating optimal embedding dimension anddI @5,13#, the
technique for estimating optimal embedding dimension a
time delay @14#, and some other works. We also apply
technique based on comparison of distances, but we c
struct a mapping that gives an optimal value of a cert
‘‘topological’’ functional.

The structure of the paper is the following. In Sec. II, w
consider various types of autoassociative networks and t
shortcomings. In Sec. III, we describe the topological ma
ping, the algorithm for its fast numerical implementatio
and in Sec. IV the numerical examples.

II. AUTOASSOCIATIVE NETWORKS AND THEIR
VARIOUS IMPLEMENTATIONS

At present, neural networks are widely used for appro
mation of unknown dependencies. Like any other appro
mation technique, these networks use parameter fitting f
selected class of functions. There are two major types
2-2
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NEURAL NETWORKS FOR ESTIMATING INTRINSIC . . . PHYSICAL REVIEW E65 046212
approximation networks, namely, multilayer perceptrons a
radial basis function networks@1#.

Multilayer perceptrons consist of a number of layers
nonlinear elements, the neurons. The state of the neuroni in
the layerj is denoted byxi , j . Each neuronxi , j receives sig-
nals from neurons in the previous layerxk, j 21 through the
connections with weightswi ,k , and then performs a nonlin
ear transformations giving its present value. In other word
each layer performs the mapping

xi j 5sS (
k51

nj 21

wi ,kxk, j 211wi ,0D ,

wherenj is the number of neurons in the layerj, andwi ,0 is
a bias for the given neuron. In order to simplify the proc
dure, sometimes a special unit neuronx0,j[1 is added to
each layer. This way the bias can be considered as a u
connection to this additional neuron. The functions is usu-
ally chosen to be a sigmoids(x)51/(11e2x) or a function
similar to it.

The input to the network is fed to the first layerzi
5xi ,0 , and its output becomes the input for the next lay
and so on. This way we obtain a feed-forward network
chitecture. There are also recurrent networks in which ba
ward connections exist, but we shall not consider them
this paper. Let the output of the last layer beyi . For the sake
of brevity we shall denote the whole mapping performed
the network asy5G(z,w), wherew is the set of weights to
be adjusted during learning. Often such networks@i.e., the
functionsG(z,w)# are presented as a diagram, where n
rons are shown as circles, and weightswi j as lines connect-
ing them.

Usually, learning of the network is performed by minimi
ing its errors in the set of the training examples, the kno
pairs $zk ,yk%, k51, . . . ,N. It is necessary to find the mini
mum of the functional

E~w!5 (
k51

N

uyk2G~zk ,w!u2.

The minimization can be done by a number of standard p
cedures. For evaluation of¹E there is a fast technique calle
error backpropagation. The details of numerical implemen
tion can be found, e.g., in Ref.@1#.

The autoassociative network, in fact, consists of t
parts: the projecting party5G1(z,w1) and the restoring par
z5G2(y,w2). The error function has the form

E~w!5 (
k51

N

uzk2G2„G1~zk ,w1!,w2…u2.

We implemented this technique and tested it with tim
series from the Lorenz attractor with various values of
mensionsm5dimz and d5dimy, N5500. The technique
worked, but we were not satisfied because of the follow
reasons.~i! The learning was rather slow. Tests with bo
three-layerG1 andG2, even for the conjugate gradient min
mization learning, took about 50 000 steps or 20–30 min o
04621
d

f

-

ual

r
-
k-
n

y

-

n

-

-

-

g

a

very fast machine~Alpha 667 MHz with speed a little bit
higher than 1.9 GHz Pentium 4!. Note that Kramer@2# used
three-layer networks where only one layer used nonlin
transformation to increase the learning rate. However, to
proximate dependencies of a general form, it may be ins
ficient. ~ii ! The results often demonstrated essential dep
dence on initial guess forw. Hence, to make sure of globa
minimum ~or close enough to it!, one has to make man
similar runs resulting in increase of computation time to s
eral hours per network architecture.~iii ! Processing of one
time series takes a number of trials with different values
m, d, and probablyN. This makes the whole procedure ve
time consuming.

Another common type of neural network is known
RBF network. Radial basis function networks provide a
proximations of a different kind. In the space of inputN
vectors one choosesM,N centersci and searches for an
approximation of the form

y5(
i 51

M

aic~ uz2ci u![R~z,a!.

The parameters are selected by minimizing the error func

E~a!5 (
k51

N I yk2(
i 51

M

aic~ uz2ci u!I 2

.

Usually, the fitting is done only by adjustingai with fixed ci
andc. Then the problem reduces to the classical search
minimum of a quadratic function, andai satisfy a linear sys-
tem of equations. This makes learning a very fast and ra
easy task, but the results may essentially depend on
proper choice ofci andc.

Building an autoassociative network with RBF is not
efficient, because the mappingz5R„R(z,a),b… depends lin-
early onb, but it has a strong nonlinear dependence ona. As
a result, the corresponding numerical algorithm is inefficie
and calculations also take a very long time. So, as w
multilayer perceptrons, this technique seems to be prac
only for small data sets. Therefore, we need a faster te
nique producing similar results. We have developed it on
basis of topological considerations.

III. TOPOLOGICAL MAPPING
AND ITS IMPLEMENTATION

As it follows from the above, the basic idea behind t
use of autoassociative networks is that there exists a sm
mappingRm→Rd such that there is no loss of informatio
about the set of vectorszi . In particular, this means tha
topological properties should be preserved, that is, cl
neighbors should remain close, remote ones should rem
remote, and two different points should not be projected i
one. In other words, there should be a proportionalityiyi
2yj i;izi2zj i . To use this idea, we need a way to adju
fitting parameters such that this proportionality is guara
teed.

There are at least two rather obvious ways to do so. Le
denote byK the number of pairs (zi ,zj ) used for the esti-
2-3
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A. POTAPOV AND M. K. ALI PHYSICAL REVIEW E 65 046212
mates. Then, if we minimize the function

E5K21(
$ i , j %

S iyi2yj i2

izi2zj i2
21D 2

, ~4!

then we should receive a mapping that preserves the
tances in an optimal way.

However, Eq.~4! may be very sensitive to situations whe
iyi2yj i@izi2zj i , but not enough sensitive to that whe
iyi2yj i!izi2zj i , and both cases are crucial for obtaining
good mappingz→y. For this reason we used another form
topological functional,

E5K21(
$ i , j %

S iyi2yj i2

izi2zj i2
1

izi2zj i2

iyi2yj i2D , ~5!

which has some features common with the one used in
@14#. The theoretical minimumE52 of Eq. ~5! is achieved
wheniyi2yj i5izi2zj i . So, numerical algorithm for obtain
ing a topological mapping is as follows: we choose a neu
network architecture giving the mappingy5G(z,w) or y
5R(z,a), and the training set of pairs$ i , j %, and then adjust
the weights of the network to minimizeE. In the numerical
results presented below we used the RBF approximation
minimized the following functional:

S~d!5min
a

E~a,d!

5min
a

K21(
$ i , j %

S iR~zi ,a!2R~zj ,a!i2

izi2zj i2

1
izi2zj i2

iR~zi ,a!2R~zj ,a!i2D . ~6!

To find the intrinsic dimensiondI we must calculateS(d)
for a number ofd values. Ifd,dI , then dimension increas
allows better unfolding of the data, andS(d) must be de-
creasing:S(d11),S(d). On the other hand, ifd>dI the
dimension increase should not influenceS(d). In other
words, atd5dI the values ofS(d) should stabilize.

However, this approach also has its shortcomings. If
use all possible pairs$ i , j %, then the training set enlarge
dramatically: instead ofN vectors we need to deal withN2/2
pairs. For large data sets this can make this algorithm
impractical. Nonetheless, as in other approaches@14,13,5#, if
we confine ourselves only tolocal properties of the mapping
only ;N pairs of nearest neighbors should be adequat
extract the value ofd. The cost of this acceleration is th
possibility of poor global properties of the mapping: f
some remotez points the correspondingy may become close
or coincide. That is, there may be no good global inve
mappingy→z. On the other hand, using all the pairs, most
which involve remote points, there is a risk of losing loc
properties.

We applied this technique to both multilayer perceptro
and RBF. Computations for the latter case were 10–
times faster because~i! the dependence ofE(a,d) on fitting
04621
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parameters is simpler, which means that fewer iterations
needed and~ii ! c does not depend ona, all values ofc(izi

2cj i) can be calculated only once, and then used at ev
iteration so that each iteration takes much less time.

As we have mentioned before, the performance of R
networks depends on the choice of approximation cen
and on the basis functionc. Let us consider these points i
more detail.

Usually, the number of centersM is chosen to be less tha
N to avoid overfitting. At the same time, for a good appro
mation, there should not be any pointzi located too far from
all centers. To satisfy these requirements, we applied the
lowing technique. In what follows, we shall denote byc(zi)
the centerc, which is the closest one to the vectorzi .

The first center is chosen to be the center of mass of
the points,c15^z&. Then we apply the following iterative
scheme assuming thatn centers are chosen.

Step 1. For eachzi find its nearest centerc(zi). This splits
the set ofz vectors into Dirichlet-Voronoi cells around eac
cj . We find vectorz* , for which izi2c(zi)i is the greatest,
and takecn115z* . In other words, the biggest cell is split

Step 2. Addition of a center changes the structure of
Voronoi cells. We find the new cells@again for eachzi find its
c(zi)#, then move eachcj to the center of mass of its ow
cell.

Step 3. Calculate the mean distancer 5^izi2c(zi)i&.
Compare it with the mean distancer 0 between pointsz. If
r /r 0 is not small enough, return to Step 1.

This algorithm provides steady decrease ofr with the ad-
dition of every new center. The homogeneous distribution
c over the set ofz is important since we study the distanc
between close neighbors of the points. This algorithm can
accelerated if at Step 1 we splitka<n biggest cells instead o
only one.

Step 1~a!. For eachzi find its c(zi).
Step 1~b!. For each cellj find its zj* , the vector belonging

to this cell with the largestiz2c(z)i . Let us denotedj

5izj* 2c(zj* )i , andd* 5maxjdj .
Step 1~c!. Selectka cells with the largestdj values, and

choose among them only those, for whichdj.
1
2 d* . Set the

correspondingzj* as the new centers.
For big ka the increase in speed may be very significa

but the total number of centers for the samer /r 0 also be-
comes greater. We used the valueka52.

Usually, for the application of the RBF technique, it is n
required that the centersc should coincide with one of thez
vectors. On the other hand, since we approximate
d-dimensional surface inm-dimensional space, it may be de
sirable to restrict the approximation centers to this surfa
and the easiest way to do it is to place the centers into s
of the vectorsz. This restricted placement can be easily do
if in Step 2 we move each centercj not to the center of mas
of its Voronoi cell, but to the vector that is closest to th
center of mass.

Usually the restricted allocation of centers results
slightly greater~about 10%! number of centers for the sam
r /r 0. All test calculations below were performed forka52
with both restricted and nonrestricted center allocation. T
2-4
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NEURAL NETWORKS FOR ESTIMATING INTRINSIC . . . PHYSICAL REVIEW E65 046212
results in both cases coincide, so at present there are
numerical evidence in favor of the restricted allocatio
though in some cases it may be better. The presented fig
correspond to the restricted center allocation.

The choice ofc is also crucial. One of the typical choice
is c(r )5exp(2r2/s2). The performance of the method d
pends on the choice ofs: for smalls ~effectively localizedc)
it is possible to obtain smaller values for the functionS ~5!,
but some effects of overfitting arise. The optimal choice os
proved to be close to the diameter of the set ofz.

The pairs$ i , j % used in Eq.~6! were selected to satisfy th
following criteria: ~i! the number of pairs should be close
N to expedite computations;~ii ! for noisy data, the pairs
should not be too close to one another;~iii ! every or almost
every point must participate in at least one pair. There m
be many ways of pair selection, we found the followin
scheme satisfactory. According to the noise level, we s
minimal distancee between points in pairs. In case of r
stricted center allocation for eachzi , which is a center we
find its e-nearest neighbor~the nearest neighbor after dis
carding all neighbor closer thane); if zi is not a center we
find its e-nearest center. For nonrestricted allocation for e
zi we used thee-nearest neighbor, which is not yet include
in other pairs. Then the structure of the nearest neighbo
accounted for.

IV. NUMERICAL EXPERIMENTS

To test our approach, we used the following data sets:~1!
two-dimensional surface in five-dimensional space, intrin
dimensiondI52; ~2! time series for Lorenz attractor,dI53;
~3! pseudorandom numbers for which there is no intrin
dimension;~4! time series for 5 torus,dI55; and ~5! time
series for the Lorenz attractor with noise. For the sets~2!–
~5!, the scalar data were transformed to zero mean and
variance before formingm-dimensional delay vectors from
them. The topological mapping has been used in the form~6!
with the techniques of selecting approximating centers
training pairs described above. The usual choice for ther /r 0
ratio was 1 or 2.

The test for the surface in two-dimensional space ill
trates the approach. The five-dimensional dataz were formed
as follows. First two componentsz1 andz2 formed a regular
20320 grid on a plane with identical steps in both direction
the third componentz35z1

21z2
2, z45z550 @Fig. 1~a!#. For

theseN5400 points we made a set of centerscj , and per-
formed minimization of the functional~6!. For minimization
we set small random initial values for alla, and then applied
the method of conjugate gradients~see, e.g., Ref.@1# or any
book in nonlinear optimization!. Minimization takes a few
thousands of steps, though usually after 1000–2000 step
dependence ofS(d) is clearly visible. The obtained value
were S(1)>4.8 and ford>2 S(d) was almost exactly 2
Therefore, we can conclude that the intrinsic dimensiona
of the data isdI52.

To show the influence of the choice of the radial ba
function c(r )5exp(2r2/s2), we performed calculations fo
two values ofs: the usual choice equal to the diameter of t
data sets15maxi,kizi2zki ands250.1s1. The resulting two-
04621
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FIG. 1. Results of a topological mapping for two-dimension
surface in five-dimensional space.~a! The original surface.~b! Its
two-dimensional projectiony5R(z,a), the radial basis function pa
rameters equal to the diameter of the data set.~c! Similar 2D
projection with s ten times less. For smalls the effects of
overfitting-type arise, though local properties of the original surfa
are captured correctly. In other examples below we useds equal to
the diameter of the data set.
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A. POTAPOV AND M. K. ALI PHYSICAL REVIEW E 65 046212
dimensional projections of the datayi5R(zi ,a) (d52) are
shown in Figs. 1~b!, 1~c!, respectively. In both cases the loc
structure of data is captured properly, though for smalls the
effects similar to overfitting appear. Global properties of t
mappingR are better in the cases5s1. For this reason the
choices5maxi,kizi2zki has been used in all other exampl
below.

For the Lorenz attractor, we used scalar time series of
componentx1 with time stept50.03, the parameters of th
system were standard—~10, 28, 8/3!. We performed a num-
ber of calculations with different time series lengthNT and
embedding dimensionm. To reduce the amount of computa
tions we used only every third reconstructed vector, soN
5NT/3. Figure 2~a! shows the results forNT5104, m55,
circles, andm57, triangles. In this figure and belowS(1)
@S(2), and toshow the details of theS(d) dependence we

FIG. 3. Topological mapping for random data,m55 (d) and
m57 (n). Note the steady decrease ofSmin with d and the absence
of stabilization.

FIG. 2. Results for the topological mapping for delay reco
structions of the Lorenz attractor witht50.03, m55 (d), andm
57 (n). The value ofS(1) is not shown, because it is too big. Th
length of time series isNT55000 ~a! and 600~b!. For d>3 the
increase ofd does not influenceS(d), so we can conclude that th
intrinsic dimensiondI53.
04621
e

e

do not showS(1) in the figures. In both casesm55 and 7S
reaches its minimal value atd53 and further increase ofd
does not change the results. Therefore the technique g
the correct estimate of the dimension of the Lorenz sys
dI53. Most interesting observation related with the Lore
system is that its dimension can be estimated from a v
short time series. Figure 2~b! shows the results forNT
5600, and the correct intrinsic dimension still can be es
mated.

For comparison, the results for random data are show
Fig. 3. We processed the sets ofN51400 five- and seven
dimensional random vectors with components independ
and homogeneously distributed on@0,1#. It is clear that in
both casesm55 andm57 Smin monotonously approache
its least value of 2.

Figure 4 shows the results for a 5 torus, a sum of five
harmonic oscillations with incommensurate frequencies.
used it as an example of a higher-dimensional system.
results give a correct valuedI55.

In all these examples, the parametere was very close to 0,
just to avoid pairs that almost coincide and can reduce
accuracy of numerical computations. To show an example
processing noisy data we made a signal with noise. We t
a time series for the Lorenz system of the example abo
transformed it to zero mean and unit variance and then ad
to it a noise term 0.2j, wherej is uniformly distributed on
@21,1#. Figure 5 shows the results for differente: for small
values the results resemble random data, for greater va

-

FIG. 4. Topological mapping for delay reconstructions of 5 tor
with t50.1, m511. The estimateddI55.

FIG. 5. Results for the Lorenz system with noise. To process
data it is necessary to increase the parameter«: «50.001 (d), «
50.1 (n), «50.3 (j). For small« noise increases the dimensio
estimate to 5, while in the last case, when« is greater than the noise
amplitude, the estimate ofdI53 is correct.
2-6
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they give the correct estimatedI53.
It is important to note that the applicability of the d

scribed technique, like any other technique of dimension
timates @5#, depends on the type and quality of data. T
topological mapping extracts the properties of finite set
points, and to get a correct estimate, this set must corre
reflect the properties of the underlying object, e.g., the
ometry of a dynamical system attractor. For low-dimensio
dynamical system this is often satisfied. At the same tim
there are situations when geometrical distortions can in
ence the arrangement of the data points. For hi
dimensional systems the number of data points may be
sufficient for detecting all dimensions and so on. This in tu
may change the results of the algorithms. One of the w
known sources of distortions is the delay reconstruction~2!
@15–17#. Other sources of distortions may arise in the cou
of measurements. Therefore, we cannot guarantee correc
timates of intrinsic dimensions ofall kinds of data. It is
necessary to make sure that there are no essential distor
in the data. Sometimes a combined application of sev
different algorithms may be recommended.

Comparing this algorithm with, e.g., the method of loc
false neighbors~LFN! @13#, we can say, that it occupies
different ‘‘ecological niche.’’ The LFN algorithm require
rather big amount of data, about 104 data points and is very
fast ~for smaller amounts of data it becomes hard to de
false neighbors!. Our technique works well for ten and mor
times smaller data sets. It requires essentially more com
tations, but the capabilities of modern Pentium III or Pe
tium 4 personal computers are enough for its application

Compared to the use of perceptrons for approximation
the projection mapping, the application of RBF networks
better for two reasons. First, they often require less mini
zation steps and each step can be done faster~Sec. III!. Sec-
ond, the dependence of results on the initial guess for
weights is better. Quite often the minimization process st
at a local minimum. According to our experiments, for pe
ceptrons such local minima often provide poor approxim
tion, and usually it is necessary to use 5–10 different ini
g,

in
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guesses and to choose the best result. For RBF approx
tions in Eq.~6! there are also numerous local minima, a
the resulting mapping may also depend on initial guess foa,
but almost all of these mappings are equivalent in terms oS
values, and we almost never found essential differences
one of the tests we used 50 different initial guesses fora, and
after 30 000 steps of minimization in 26 cases we obtain
S52.011, in 21 casesS52.012, and only three values wer
equal to 2.029, 2.047, and 2.085. Therefore, this techni
does not require numerous repetitions. Another import
point is that the type of dependenceS(d) can be observed
typically after 1000–2000 minimization steps, sometim
earlier. Although the values ofS(d) are not yet established
after these steps, the trend ind is usually stabilized and it is
possible to draw conclusions about the dimensionality
data.

V. CONCLUSION

We have proposed an algorithm based on RBF netwo
which, by analogy with Ref.@2#, can be called ‘‘topological
nonlinear PCA.’’ It extracts the intrinsic dimension of dat
Intrinsic dimension can be important for diagnostic purpo
or for designing a controlling neural network that shou
analyze observed data. This technique is versatile and
compared to other neural approaches. On the other hand
based mainly uponlocal topological properties of data, while
preservation of global topology is not guaranteed. For t
reason, this technique may not be useful for data comp
sion. Nonetheless, it gives an essential information for bu
ing an autoassociative network that can compress the da
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